Extensions 1→N→G→Q→1 with N=3- 1+2 and Q=C32

Direct product G=N×Q with N=3- 1+2 and Q=C32
dρLabelID
C32×3- 1+281C3^2xES-(3,1)243,63

Semidirect products G=N:Q with N=3- 1+2 and Q=C32
extensionφ:Q→Out NdρLabelID
3- 1+21C32 = C3×C3≀C3φ: C32/C3C3 ⊆ Out 3- 1+227ES-(3,1):1C3^2243,51
3- 1+22C32 = C3×He3.C3φ: C32/C3C3 ⊆ Out 3- 1+281ES-(3,1):2C3^2243,52
3- 1+23C32 = C33⋊C32φ: C32/C3C3 ⊆ Out 3- 1+2279ES-(3,1):3C3^2243,56
3- 1+24C32 = He3.C32φ: C32/C3C3 ⊆ Out 3- 1+2279ES-(3,1):4C3^2243,57
3- 1+25C32 = C3×C9○He3φ: trivial image81ES-(3,1):5C3^2243,64
3- 1+26C32 = 3- 1+4φ: trivial image279ES-(3,1):6C3^2243,66

Non-split extensions G=N.Q with N=3- 1+2 and Q=C32
extensionφ:Q→Out NdρLabelID
3- 1+2.1C32 = C3×C3.He3φ: C32/C3C3 ⊆ Out 3- 1+281ES-(3,1).1C3^2243,54
3- 1+2.2C32 = C9.He3φ: C32/C3C3 ⊆ Out 3- 1+2273ES-(3,1).2C3^2243,55
3- 1+2.3C32 = C32.C33φ: C32/C3C3 ⊆ Out 3- 1+2279ES-(3,1).3C3^2243,59
3- 1+2.4C32 = C9.2He3φ: C32/C3C3 ⊆ Out 3- 1+2279ES-(3,1).4C3^2243,60

׿
×
𝔽